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Abstract: Most tree roots on Earth form a symbiosis with either ecto- or arbuscular mycorrhizal 9 

fungi. Nitrogen fertilization is hypothesized to favor arbuscular mycorrhizal tree species at the 10 

expense of ectomycorrhizal species due to differences in fungal nitrogen acquisition strategies, 11 

and this may alter soil carbon balance, as differences in forest mycorrhizal associations are 12 

linked to differences in soil carbon pools. Combining nitrogen deposition data with continental-13 

scale U.S. forest data, we show that nitrogen pollution is spatially associated with a decline in 14 

ectomycorrhizal vs. arbuscular mycorrhizal trees. Furthermore, nitrogen deposition has 15 

contrasting effects on arbuscular vs. ectomycorrhizal demographic processes, favoring 16 

arbuscular mycorrhizal trees at the expense of ectomycorrhizal trees, and is spatially correlated 17 
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with reduced soil carbon stocks. This implies future changes in nitrogen deposition may alter the 18 

capacity of forests to sequester carbon and offset climate change via interactions with the forest 19 

microbiome. 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction: Forests represent 31% of global land surface area (Food and Agriculture 21 

Organization, 2010) and currently offset ~2.4 Pg of CO2 emissions every year by storing carbon 22 

(C) in live plant biomass and soil (Pan et al., 2011). A central component of this C storage 23 

capacity may be the presence of different members of the forest microbiome. Two dominant 24 

classes of mycorrhizal fungi, the arbuscular mycorrhizal fungi and ectomycorrhizal fungi (AM 25 

and EM, respectively), form a symbiosis with the roots of most trees on Earth, enhancing access 26 

to soil nutrients and water (Smith & Read, 2009; van der Heijden et al., 2015). AM fungi 27 

primarily rely on inorganic forms of N (Hodge & Fitter, 2010; Phillips et al., 2013) and small 28 

organic N compounds (Whiteside et al., 2012). In contrast, EM fungi are thought to rely more 29 

heavily on organic N sources (Phillips et al., 2013), having a greater capacity to invest in N 30 
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degrading extracellular enzymes that access complex organic forms of N in soil, such as proteins 31 

and chitin (Fernandez & Kennedy, 2016). EM fungi are associated with both slower 32 

decomposition of soil organic matter by free-living microbial populations and increased soil C 33 

storage (Gadgil & Gadgil, 1971; Averill et al., 2014; Averill & Hawkes, 2016; Fernandez & 34 

Kennedy, 2016; Kyaschenko et al., 2017), potentially by competing with free-living soil 35 

microbes for these organic N resources or differences in plant or fungal organic matter chemistry 36 

(Averill & Hawkes, 2016; Fernandez & Kennedy, 2016). These distinctions between AM and 37 

EM fungi lead to two important predictions: 1- that inorganic N inputs to ecosystems will favor 38 

AM associated trees at the expense of EM associated trees, and 2- that inorganic N driven 39 

declines in EM composition of forests will reduce the belowground C storage capacity of the 40 

forest biome.  41 

 Continental scale inorganic N deposition provides an opportunity to test predictions of 42 

how N, plant-microbial systems, and soil C interact at large spatial scales. N deposition in the 43 

U.S. has increased 5-10 times over preindustrial levels, predominately due to fossil fuel burning 44 

(Aber et al., 2003). Variability in N emission source locations, topography, wind and rainfall 45 

patterns produce a heterogeneous geographic distribution of N deposition in the U.S., allowing N 46 

deposition patterns to be leveraged as an unintentional inorganic N addition experiment. 47 

Previous species-level analyses suggest that both AM and EM tree growth rates can respond 48 

positively to N deposition (Thomas et al., 2010); however, it is unclear whether or not these 49 

species-level responses translate to changes in the relative balance of EM vs. AM associated 50 

trees at the community-level, which regulates landscape-level soil biogeochemical cycling. 51 

 To determine if N deposition is changing the total composition of these symbiont types at 52 

a scale that could impact the C storage capacity of the biosphere, we analyzed the relative 53 

abundance of AM and EM trees in 2,760 U.S. forest plots, comprised of 65,769 trees, coupled 54 

with direct site-level observations of soil C stocks collected from the U.S. Forest Service's Forest 55 

Inventory and Analysis database (Forest Inventory and Analysis, 2014, Fig. 1). We analyzed 56 

how anthropogenic N deposition is spatially correlated with the relative abundance of AM and 57 

EM trees, as well as current forest growth, tree recruitment, mortality rates, and total soil C 58 

stocks, using a Bayesian statistical framework. Doing so enabled us to ask if N-fertilization via 59 

anthropogenic N deposition favors AM at the expense of EM associated trees and if these 60 

changes in forest mycorrhizal composition may translate to differences in soil C balance. 61 
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 62 

Materials and Methods:  63 

General Analysis Approach: This analysis aimed to isolate the effect of N deposition on soil C 64 

storage, the relative abundance of EM vs. AM trees, and EM vs. AM basal area growth, 65 

recruitment and mortality rates across the continental U.S., while controlling for the potential 66 

effects of mean annual temperature, mean annual precipitation, soil pH, soil C:N or total N 67 

stock, and soil clay content. This is done using a Bayesian multiple regression framework, 68 

where the relationship between all environmental predictors and individual EM or AM tree 69 

dynamics are estimated simultaneously. In Bayesian analysis, a probability distribution is 70 

estimated for each dependent variable (i.e. EM or AM relative abundance data, growth rates, 71 

recruitment counts, mortality occurrences and soil C stocks) as it is regressed against the 72 

independent variables in the multiple regression model (Dietze, 2017). A relationship between 73 

a dependent and independent variable can be considered significant if the 95% credible interval 74 

of the corresponding parameter estimate does not overlap zero. We implemented these models 75 

in a Bayesian statistical framework because it allowed us to account for variable re-census 76 

intervals in forest inventory data without transforming data, and in basal area growth, 77 

recruitment and mortality models it allowed us to flexibly fit non-linear relationships and more 78 

complex probability distributions. Furthermore, Bayesian models allow us to propagate 79 

uncertainty by sampling from the distribution of each parameter estimate in our model when 80 

estimating the predicted effect of N deposition on a dependent variable of interest (Dietze, 81 

2017). For example, when we estimate the effect of N deposition on the relative abundance of 82 

EM trees in a forest holding all other predictors constant at their means, the 95% credible 83 

interval of the mean effect at a given level of N deposition reflects not only the uncertainty in 84 

the N deposition effect, but also the uncertainty in temperature, precipitation, pH, C:N, clay 85 

and intercept parameter estimates. 86 

 Only predictors with parameter estimates where 95% credible intervals did not overlap 87 

zero are discussed as having a significant effect in the main text. When reporting or visualizing 88 

the effect of a single predictor variable (say N deposition) on a dependent variable, we varied 89 

the predictor over its entire range in the data set, holding all other predictors constant at their 90 

mean values. In this way, we evaluated the effect size of a predictor in isolation, while 91 
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accounting for the effects and uncertainties of all other predictors in the model. Complete 92 

description of data collection and analysis are detailed below. 93 

Data Collection: This analysis used all plots within the U.S. forest inventory and analysis 94 

(FIA) data set (Forest Inventory and Analysis, 2014) that have paired soil C observations. Soil 95 

C profiles are aggregated down to 20 cm depth in the mineral soil (if soils are this deep), plus 96 

any overlying organic horizon profiles. This approach causes the total soil profile depth to vary 97 

across sites, because while most profiles contain 20cm of mineral soil, the depth of the forest 98 

floor horizon will vary. Because our analysis is premised on the hypothesis that EM 99 

ecosystems may slow decomposition due to an ecological interaction, it may be that variation 100 

in organic horizon thickness is an outcome of this process. In contrast, we do not expect 101 

mycorrhizal associations to modify the depth of the mineral soil horizon. Therefore, we 102 

standardized soil element aggregation to a fixed depth in the mineral soil plus any overlying 103 

organic material. This generated soils data (soil C, N, soil pH), paired with forest composition 104 

data for each site. A subset of sites had been re-measured in time, allowing calculation of forest 105 

basal area growth, recruitment and mortality rates. These two data sets were used for five down 106 

stream analyses. We refer to the complete data set as the "abundance data set" and the second 107 

that includes temporal remeasurement of forest properties as the "remeasurement data set". We 108 

only used FIA plots that are forested and have no recent evidence of active management or 109 

human harvesting. We note that most forests in the United States have some history of human 110 

disturbance, and our analysis cannot account for time since last time stand replacing 111 

disturbance. Full details of data filtering, soil aggregation, and other site selection procedures 112 

are presented in the Supporting Information 1. 113 

Within each plot, each tree was assigned a mycorrhizal type based on the 114 

supplementary data file in Phillips et al. (Phillips et al., 2013), which provides mycorrhizal 115 

assignments for most tree species within the FIA database. This file was supplemented with 116 

information on mycorrhizal status for western U.S. tree species (References provided in 117 

Supporting Information 2). We calculated the relative abundance of EM trees as the basal area 118 

of all live EM trees within a plot, divided by the total basal area of live trees within the plot. 119 

We only analyzed sites where more than 90% of forest basal area consisted of AM or EM 120 

mycorrhizal tree species (AM, EM, or a combination of the two types) at the time of soil 121 

sampling (i.e. (BasalAM  + BasalEM) / Basaltotal > 0.9). Hence, a plot consisting of 50% EM and 122 
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50% AM trees by basal area would be retained in this analysis. We excluded plots with >10% 123 

non-mycorrhizal, arbutoid, and eriocid mycorrhizal symbionts, as well as hosts that are known 124 

to strongly associate with both AM and EM, but this only constituted 15% of the available 125 

sites. The final abundance data set included 2,760 unique sites, encompassing 65,769 trees. 126 

Past analyses along AM to EM gradients have demonstrated that the relative abundance of AM 127 

vs. EM trees aboveground can be indicative of the abundance of these fungal community 128 

members belowground (Nave et al., 2013; Soudzilovskaia et al., 2015; Cheeke et al., 2016). 129 

The second FIA database subset (“re-measurement dataset”) represents the first re-130 

measurement of all FIA forest plots after the initial soil sampling and was used for analyses of 131 

basal area growth, recruitment and mortality. The majority of plots (1,912 of 2,760 plots) had 132 

been re-measured since the time of the initial soil sampling. Initial visits were conducted 133 

between 2000-2011. Re-measurement visits were conducted in 2004-2015. The average 134 

duration of the re-measurement interval was 6.3 years. Because the soil properties used in this 135 

analysis change slowly at this time scale, we are confident that the demographic patterns 136 

observed in the re-measurement analysis are relatable to the initial soil conditions. We chose to 137 

analyze the observation after the initial measurements, rather than the one prior, because many 138 

of the soil sites included in the Phase 3 data are new to the FIA, and as a result, had no prior 139 

observation of forest composition. Using the observations during and after the soil sampling 140 

enabled more data to be included in the tree re-measurement analysis. The final data set used 141 

for the analysis of tree mortality included 1,912 unique sites, encompassing 54,378 trees (Fig. 142 

1). 143 

 144 

Climate, N deposition and soil clay data: Climate data for each plot were assigned using 145 

PRISM 30-year 1981-2010 climate normal data products at 800-meter resolution for mean 146 

annual temperature (MAT) and mean annual precipitation (MAP) (PRISM Climate Group & 147 

Oregon State University, 2017). Soil texture (% clay) data was extracted from the North 148 

American Carbon Project Unified North American Soil Map at 0.25 degree resolution (Liu et 149 

al., 2014). N deposition rates were determined using the National Atmospheric Deposition 150 

Program (NADP) 15-year mean wet and dry N deposition (NH4
+ + NO3

-) from the 2000-2014 151 

interval at 0.25° resolution (National Atmospheric Deposition Program, 2015). While 152 

deposition data are for the most recent time interval available, comparison of wet N deposition 153 
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data from the 15-year 2000-2014 interval is strongly correlated with the 30-year 1985-2014 154 

interval (r2 = 0.96). Therefore, we are confident that 2000-2014 data are representative of 155 

historical patterns of N deposition loads in the United States. It is important to note that the FIA 156 

does not report latitude and longitude data with exact precision; latitude and longitude 157 

coordinates are limited in accuracy to ~800 meters. However, given the resolution of the data 158 

products used here, and the fact that climate and N deposition variables are highly spatially 159 

auto-correlated at the kilometer scale, the spatial accuracy of the climate and N deposition 160 

products is on par with the spatial accuracy of the FIA site locations (Dietze & Moorcroft, 161 

2011). In addition to not reporting exact spatial locations, the FIA randomly swaps 20% of 162 

plots within a county. Because plots are swapped randomly, swapping should not bias our 163 

parameter estimates, only increase uncertainty in our parameter estimates associated with 164 

predictors derived from spatial products (MAT, MAP and N deposition). Furthermore, 165 

variation in these predictors is much larger between counties than within, and therefore we can 166 

still capture variation in forest and soil processes driven by these predictors, even if all sites 167 

were randomly swapped within a county. Finally, the number and spatial scale of wet and dry 168 

observation network sites is unlikely to capture small-scale point sources, which can generate 169 

high levels of N deposition at very local scales. These effects will necessarily be missed by our 170 

analysis. Despite this limitation, the >20x variation captured in the NADP N deposition data 171 

(1.2-27.0 kg N ha-1 yr-1

 Spurious relationships between N deposition and AM vs. EM relative abundance or 174 

forest demographic processes are possible, if the geographic distribution of N deposition is 175 

spatially confounded with other environmental factors known to influence forest dynamics. For 176 

example, the highest levels of N deposition are found in the Midwest, where there is some 177 

evidence of a shift from EM to AM species due to changes in fire regime (McEwan et al., 178 

2011). To address this potential confounding among N deposition, forest mycorrhizal type, and 179 

other environmental factors, we replicated our analyses, first excluding all states west of the 180 

Mississippi River, and then excluding both Western states (comprised predominantly of EM 181 

associated stands, and has, on average, the lowest levels of N deposition) and Midwestern 182 

states. 183 

) may still inform the underlying drivers of variation in mycorrhizal 172 

functional types. 173 

Statistical Analysis 184 
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Modeling the relative abundance of EM trees: We modeled the relative abundance of EM trees 185 

at the plot level as a continuous beta distribution, which is designed to deal with proportional 186 

data on the interval (0,1), accounting for changes in variance as a function of the mean. 187 

Because our data set included many 0's and 1's, we transformed relative abundance values 188 

according to: 189 � =  (� ∗  (� − 1)  +  0.5) / � 

Where y is the relative abundance of EM basal area, bounded on the interval [0,1] and n is the 190 

sample size (Smithson & Verkuilen, 2006). This had the effect of transforming 0 and 1 values 191 

to 0.000210 and 0.99979. We also ran models with 0,1 transformation to 0.010,0.990 and 192 

0.001,0.999. All models generated analogous results, with similar effect sizes. The parameters 193 

of the beta distribution, pi and qi

We modeled m

 were described as: 194 ��  =  ��  ∗  � ��  =  (1 −��)  ∗  � 
i

 198 

 as the logit transform of the linear combination of MAT, MAP, soil C:N, soil 195 

pH, soil clay and N deposition. All parameters were assigned normally distributed, 196 

uninformative priors, save for t, which was assigned a gamma distributed, uninformative prior. 197 

Modeling plot-scale basal area growth of surviving trees: Basal area growth was estimated at 199 

the plot-level, on plots visited one measurement period after the initial soil measurement (i.e. 200 

“re-measurement dataset”). Because this analysis is primarily concerned with which plant 201 

mycorrhizal type is most abundant, we chose to analyze growth as basal area increment, rather 202 

than C increment, as this better reflects which trees are largest and growing the fastest within a 203 

plot. Basal area increment was modeled as a log-normal distribution, where the log of the 204 

survival basal area increment was modeled as a linear function of previous basal area, climate, 205 

soil and N deposition, and an interaction between N deposition and the relative abundance of 206 

EM associated trees within a plot at the end of the measurement interval. Once models were fit, 207 

visual inspection of the relationship between basal area growth and N deposition suggested an 208 

intermediate 'hump' in the relationship between N deposition and stand basal area growth in the 209 

full data set. To model this, we added a Gaussian relationship between N deposition and basal 210 

area growth, in addition to the linear relationships, which took the form of: 211 
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�1 ∗ �(� − �2)22�32  

Where g1, g2 and g3

 219 

 are the parameters of the Gaussian distribution and x is N deposition. We 212 

placed a positive constraint on Gaussian parameter priors to aid in model convergence. Finally, 213 

models with Gaussian perturbations resulted in multiple alternative parameter combinations 214 

that were equally parsimonious, and therefore not all chains converged. To satisfy convergence 215 

criteria we subsetted model output to chains that converged on a similar area of parameter 216 

space, though we note there were several Gaussian parameter combinations that returned 217 

equivalent results. 218 

Modeling tree-level mortality: Mortality probability (Mi) was estimated based on the logistic 220 

regression model for binary mortality data. Because the FIA census interval varies at the plot 221 

level, we related annual mortality probability (pi) of tree i to the observed binary mortality data 222 

(Mi

Where t

) using a Bernoulli likelihood (Dietze & Moorcroft, 2011), 223 ��  =  ����(1 −  (1 − ��)��) 

i is the duration of the census interval for a given plot. pi was modeled as the inverse 224 

logit transform of zi, where zi is a linear combination of MAT, MAP, soil C:N, soil pH, soil 225 

clay, mycorrhizal type, N deposition, and a linear interaction between N deposition and 226 

mycorrhizal association. In calculating zi, we accounted for the non-linear relationship between 227 

tree diameter (D) and mortality probability by including two exponential terms. The first term 228 

accounts for the initial decline in tree mortality probability as trees increase in size. The second 229 

term accounts for the increasing mortality probability of large diameter, older trees. The 230 

summation of these two relationships will generate the commonly observed "J" shaped 231 

relationship between tree mortality probability and tree diameter (Dietze & Moorcroft, 2011). 232 

The full expression of zi

Parameters b

 was constructed as, 233 ��  =  �1 ∗ ��� +  �2 ∗ ��� +  �3 ∗ �����:�  +  �4 ∗ ������  +  �5 ∗ ��������  +  �6∗ ���_���� +  �7 ∗ ���� +  �8 ∗ ���_���� ∗ ����  +  �−�9∗�  +  ��10∗� 

1 - b8 were assigned normally distributed, uninformative priors. Parameters b9 and 234 

b10

 237 

 priors were assigned exponentially distributed priors, constrained to values greater than or 235 

equal to 0 to avoid fitting redundant model terms. 236 
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Modeling plot level recruitment: Recruitment of trees was modeled using a zero-inflated 238 

Poisson model, to account for the fact that the abundance of zeros in tree recruitment data is 239 

often poorly fit by traditional Poisson models (Fortin & DeBlois, 2007). A multi-model 240 

average was fit, modeling the occurrence of recruitment as a Bernoulli process, and then the 241 

number of recruits as a Poisson process. The Poisson model was then weighted by the 242 

probability of recruitment occurring estimated by the Bernoulli model in order to account for 243 

zero inflation. Because the FIA census interval varies at the plot level, we related the annual 244 

number of recruits (ri) of plot i to the observed number of recruits over a given census interval 245 

(Ri

Where t

) using a Poisson likelihood, 246 ��  =  ����(�� ∗ ��) 

i

 254 

 is the duration of the census interval for a given plot. We fit separate models for AM 247 

and EM recruitment. MAT, MAP, soil C:N, soil pH, soil clay and N deposition were used as 248 

predictors for both Poisson and Bernoulli components of the model. Finally, the number of AM 249 

or EM recruits within a plot will strongly depend on the relative abundance of AM or EM trees 250 

already present within a plot (i.e. the apple does not fall far from the tree). To account for this, 251 

we included the relative abundance of AM or EM trees as covariates within models of AM or 252 

EM recruitment. 253 

Modeling soil C storage: Soil carbon was modeled as a linear function of MAT, MAP, soil pH, 255 

soil clay, soil N stock, the relative abundance of EM tree basal area, and an interaction between 256 

the relative abundance of EM tree basal area and soil N stocks. Models relating soil C and N at 257 

large spatial scales generally violate the assumption of normality of residuals (Averill et al., 258 

2014), as there are multiplicative errors associated with the measurement of soil C on an area 259 

basis. Therefore, we modeled soil C with a lognormal distributed probability density, and log 260 

transformed the soil N predictor. All parameters were assigned normally distributed, 261 

uninformative priors. We considered accounting for residual spatial autocorrelation in this 262 

model, yet initial semivariograms of soil C fit to an intercept only model exhibited little 263 

residual spatial autocorrelation. Because of this, we proceeded to analyze all soil C 264 

observations under the assumption they are spatially independent. 265 

 266 
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Bayesian model diagnostics and convergence: Forest basal area growth, mortality, recruitment 267 

and soil C storage analyses were all analyzed in a Bayesian framework. Bayesian models were 268 

fit using the runjags package for R statistical software (Denwood, in review; R Core Team, 269 

2017). JAGS models were initialized with three chains, checked for convergence, and had 270 

initial burn-in iterations removed before estimation of final parameter values. Parameter values 271 

were estimated based on a minimum of 10,000 samples of 3 independent chains, after 2,000 272 

adaptive iterations and 4,000 burn-in iterations. Parameter estimates were deemed converged 273 

based on visual inspection of chain parameter estimates for the last 10,000 iterations, and 274 

checking that Gelman diagnostic values for each parameter were below 1.1 (Gelman, 2014). 275 

Additional samples were taken as necessary to achieve convergence. 276 

 277 

Reporting of Results: We discuss results for predictors where the 95% credible interval did not 278 

overlap zero, which is our criteria for statistical significance, and refer to predictors that do not 279 

meet this condition as having no effect on the modeled dependent variable (Gelman, 2014). 280 

Recruitment mean and 95% confidence interval is reported as the mean number of recruits based 281 

on the fit of the Poisson model prior to discretization via the Poisson distribution, weighted by 282 

the probability of recruitment occurring based on the binomial model. 283 

 We plotted binned means of dependent variables in response to N deposition, controlling 284 

for the effects of other covariates in the model. To do this, we subtract the product of each 285 

parameter-covariate combination of each observation from the dependent variable, and add back 286 

in the mean value of the parameter-covariate combination from the data set. For example, if 287 

forest basal area growth was modeled by the function, 288 ����� ���� �����ℎ�  =  0.5 ∗  ������������ +  0.1 ∗ �������������� 
To isolate the effect of precipitation on basal area growth and remove the effect of temperature, 289 

we would transform our observations of basal area growth to remove the variance associated 290 

with temperature using the following transformation: 291 ����� ���� �����ℎ�� =  �����ℎ�  −  0.5 ∗ ������������  +  0.5 ∗ ��������������� 

Where basal area growthTi is the transformed value of an individual basal area growth 292 

observation, controlling for the effect of temperature. Error bars represent the standard error of 293 

the mean within a bin, except for mortality bins where error bars represent 95% confidence 294 
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intervals, calculated using the Pearson-Klopper method, implemented in the binom package for 295 

R statistical software (Sundar, 2014). 296 

 297 

Results: Across the continental U.S., N deposition was associated with a greater abundance of 298 

AM compared to EM dominated forests (Fig. 2a). Furthermore, we observed contrasting 299 

relationships between AM vs. EM basal area growth and recruitment rates with increasing N 300 

deposition. AM trees grew faster with increasing levels of atmospheric N deposition compared to 301 

EM trees (Fig. 2c,d,e). In addition, N deposition increased AM tree recruitment rates, while EM 302 

recruitment rates declined (Fig. 2f, 2g,h). N deposition also increased the probability of tree 303 

mortality, however we detected no difference between the mortality rates of AM vs. EM 304 

associated trees (Fig. 2b). These relationships were robust to subsetting the data set to exclude 305 

the western U.S. or both the western and midwestern U.S. states (Supporting Information Fig. 1-306 

2). 307 

 In an effort to quantify this potential influence of forest disturbance, we analyzed the 308 

relationship between N deposition and stand age in the FIA data set. We found younger forest 309 

sites tended to have higher levels of N deposition, yet this relationship was lost once western 310 

U.S. states were excluded. To determine if correlation between forest age and N deposition may 311 

be biasing our results we re-ran models of EM relative abundance including forest age as an 312 

additional covariate. We found a negative relationship between forest age and EM relative 313 

abundance, inconsistent with a positive correlation between N deposition and forest age driving 314 

our findings. Furthermore, inclusion of the stand age covariate did not change the parameter 315 

estimate of N deposition in our model of EM relative abundance. 316 

Aboveground forest responses to N deposition were also associated with changes in the C 317 

content of U.S. forest soils. At low levels of N deposition, EM forests stored more C in soils than 318 

AM forests (Fig. 3a). However, N deposition interacted with mycorrhizal type; at the highest 319 

levels of N deposition C-storage decreased and the difference in C-storage between AM and EM 320 

forests disappeared (Fig. 3b). Subsetted analyses showed EM sites were still associated with 321 

elevated soil C content, though the interactive effect of mycorrhizal type and N deposition on 322 

soil C was lost (Fig. S3, S4). 323 

 We report full model output (parameter estimates, standard deviations, and significance 324 

values) in Supporting Information 1 Tables 1-6. We also provide beta factors (the change in 325 
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dependent variable associated with 1 standard deviation variation in each independent variable) 326 

in Supporting Information 1 Tables 7-12. 327 

 328 

Discussion: AM and EM fungi are the dominant groups of forest mycorrhizal fungal symbionts 329 

worldwide (Read & Perez-Moreno, 2003; Phillips et al., 2013). These fungi have long been 330 

thought to represent adaptations to differences in ecosystem N availability (Read, 1991), but 331 

ecosystem-scale validation of this hypothesis has been challenging, as it takes decades to observe 332 

changes in forest composition. Our analysis demonstrates that N deposition from anthropogenic 333 

sources is spatially correlated with lower EM abundance and greater AM abundance in U.S. 334 

forests, supporting this hypothesis (Figure 2a). Our analysis of demographic process rates also 335 

shows higher levels of N deposition drive a suite of changes in basal area growth, recruitment 336 

and mortality rates favoring AM trees at the expense of EM trees (Figure 2b-2h). This result 337 

implies that N deposition is currently changing the balance of AM and EM associated trees in 338 

U.S. forests. In addition, the interaction between mycorrhizal strategies, N deposition, and soil C 339 

storage indicates that ongoing changes in forest composition – particularly of the soil 340 

microbiome – with N inputs may have downstream consequences for belowground C 341 

sequestration and global climate change, to the extent that a loss of EM forest community 342 

members with increasing levels of N deposition translates to a loss of soil C from forest floor and 343 

upper mineral soil layers. 344 

 Our analyses of forest composition and demographic process rates control for soil C:N 345 

ratio and soil pH (key indicators of soil fertility), and we excluded sites with evidence of recent 346 

human management. However, we cannot rule out the potential influence of correlations between 347 

historical forest disturbance regimes and forest mycorrhizal composition, which may be 348 

confounded with N deposition. In an effort to quantify this potential influence of forest 349 

disturbance, we analyzed the relationship between N deposition and stand age in the FIA data 350 

set. We did find that younger forest sites tended to have higher levels of N deposition, yet this 351 

relationship was lost once western U.S. states were excluded. Furthermore, incorporating stand 352 

age into our analysis showed a negative relationship between stand age and relative abundance of 353 

EM trees- i.e. older stands had more AM trees, and did not change N deposition parameter 354 

estimates. Based on these findings we believe it is unlikely that correlations between N 355 

deposition and historical forest disturbance regimes are driving our results. 356 
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 Our analysis supports the conclusion that N deposition is currently shaping the relative 357 

abundance of AM and EM trees in U.S. forests and will continue to do so in the future. This is 358 

because N deposition favors AM basal area growth and recruitment at the expense of EM basal 359 

area growth and recruitment (Fig. 2c,h), but does not have a differential effect on mortality 360 

through time. Furthermore, basal area growth and recruitment curves cross. This combination of 361 

crossing temporal demographic responses to N deposition means that, given sufficient time, a 362 

pressure of high N deposition rates will  transition an EM forest to an AM forest, or the 363 

suspension of high N deposition rates may revert an AM forest to an EM state. 364 

We observed strong spatial relationships between N deposition, mycorrhizal type, and 365 

soil C stocks after accounting for major environmental factors known to influence mycorrhizal 366 

basal area growth in forests across space (climate, total N stock, and other soil properties), 367 

suggesting that these patterns are foundational for predicting changes in soil C stocks with N 368 

pollution. Our observations are also consistent with theoretical work showing that EM associated 369 

trees can stabilize soil C by inducing N limitation of microbial decomposer communities (Read 370 

& Perez-Moreno, 2003; Orwin et al., 2011; Phillips et al., 2013) and with experimental data 371 

validating predictions from this theory (Averill & Hawkes, 2016). Elevated C storage in EM 372 

ecosystems may also be driven by additional mechanisms, such as differences in input litter 373 

chemistry between AM and EM trees or fungi (Cornelissen et al., 2001; Fernandez & Koide, 374 

2012; Phillips et al., 2013). Regardless of the particular mechanism, our analysis suggests that 375 

global change impacts on plant-microbial interactions in forest ecosystems may have large 376 

consequences for C sequestration at continental scales.  377 

  The negative correlation we observed between N deposition and soil C stocks contrasts 378 

other empirical work showing that N inputs broadly suppress the activity of microbial 379 

decomposers in forest ecosystems (Janssens et al., 2010). One reason for this underlying 380 

discrepancy may be fundamental differences in how N is added via N deposition compared to N 381 

fertilization experiments. While both additions may result in the same annual rate of N input, N 382 

fertilizer intended to simulate anthropogenic N deposition is frequently added as several doses at 383 

far higher concentration than is experienced in continuous low-concentration N deposition in 384 

North American temperate forests (Vadeboncoeur, 2010). High concentration additions of 385 

mineral N to soil may transiently overwhelm microbial N demand, driving elevated nitrification 386 

and acidity (Gundersen & Rasmussen, 1990; Tian & Niu, 2015; Chen et al., 2016) compared to 387 
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what would occur under more realistic anthropogenic N loading regimes. N fertilization 388 

experiments frequently observe changes in pH (Ramirez et al., 2010; Riggs et al., 2015) and soil 389 

water potential (Braddock et al., 1997), suggesting that there may also be a direct effect of 390 

elevated salinity and osmotic stress on microbial growth and activity when adding N fertilizers 391 

(Averill and Waring 2018). Our analysis explicitly controls for soil pH, and this may explain the 392 

discrepancy in results. In addition, we found that N deposition effects on soil C depend on the 393 

relative abundance of EM community members (Fig. 3a). Such a phenomenon may result if N 394 

deposition relieves N limitation of saprotrophic microbial populations in soils due to competition 395 

with EM fungi for N resources, or if there are differences in organic matter chemistry between 396 

AM and EM ecosystems. Either mechanism would result in N deposition increasing 397 

decomposition activity and driving further losses of soil C. 398 

 The FIA soil sampling only extends to 20cm depth in the mineral soil. It is possible AM 399 

and EM forests have differential effects at greater soil depths, and these patterns will be missed 400 

by this analysis of shallower soil profiles. Furthermore, there is increasing recognition that 401 

particulate vs. mineral associated organic matter may respond differentially and in contrasting 402 

directions to changes in soil microbial activity (Schmidt et al., 2011; Cotrufo et al., 2013; Averill 403 

& Waring, 2018). This analysis only considers bulk soil C, and cannot speak to differential 404 

effects of mycorrhizal association on these finer scale soil C pools. Additional measurements of 405 

soil mineral sorptive capacity, beyond what can be captured by basic soil texture measurements, 406 

will likely improve statistical models designed to capture spatial variation in soil C storage. 407 

 Our analysis of the relative abundance of EM basal area in forests support the long-408 

standing paradigm of what controls the abundance of EM vs. AM trees within a forest (Read, 409 

1991; Smith & Read, 2009). In temperate forests of the U.S., EM trees are most abundant in cool 410 

and wet habitats, while AM trees are more abundant in warmer and drier habitats (Fig. S6). We 411 

found that soil C:N and soil pH were also strong predictors of the relative abundance of EM vs. 412 

AM trees. Given that EM trees often generate acidic litter inputs to ecosystems (Phillips et al., 413 

2013), it is difficult to say whether the soil pH is a cause or effect of the presence of EM trees. 414 

Nevertheless, our finding that AM associations are more beneficial to trees under high soil N 415 

availability compared to EM associations supports long-standing theories of differences among 416 

mycorrhizal types (Read & Perez-Moreno, 2003; Phillips et al., 2013). Overall, our analysis 417 
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provides critical empirical support for long hypothesized environmental controls over the relative 418 

abundance of AM vs. EM trees within the temperate forest biome. 419 

 It is important to note that while this analysis assumes all EM trees behave the same, 420 

there is substantial variability in ECM fungal communities even in forests dominated by a single 421 

tree species (Clemmensen et al., 2013; Averill & Hawkes, 2016). This variation in composition 422 

likely drives changes in the functioning of these mycorrhizal communities, as different EM fungi 423 

are known to be differentially sensitive to N deposition (Lilleskov et al., 2002), and these 424 

different N response sensitivities have been linked to different mycorrhizal exploration types and 425 

resource preferences (Hobbie & Agerer, 2010; Hobbie et al., 2014). Differences in EM fungal 426 

communities within forest types that affect tree demographic processes and soil C stocks will be 427 

missed by this analysis, and likely contribute to uncertainty in model fits. We see simultaneous 428 

modeling of both plant and soil microbial communities through time, as well as their interaction, 429 

as an urgent next step in predicting future states of temperate forest ecosystems. 430 

 This study suggests a potential for losses of belowground C in response to N deposition, 431 

which may substantially mitigate previously reported N deposition induced increases in 432 

aboveground C storage (Thomas et al., 2010). Validating the relative contributions of N 433 

deposition to C storage vs. loss wil l require repeated measurements of forest soil C profiles 434 

across N deposition gradients in time. Our study provides a framework for how large-scale forest 435 

inventory datasets could be used to predict the balance of ecosystem C stocks, specifically by 436 

injecting critical aspects of soil microbial community composition into ecosystem models of the 437 

terrestrial C cycle. AM and EM mycorrhizal associations have been linked to the ability of 438 

ecosystems to sustain plant productivity in response to elevated CO2

 448 

 (Terrer et al., 2016) and 439 

soil C storage capacity (Averill et al., 2014; Averill & Hawkes, 2016) via interactions with soil 440 

N availability. The spatial extent of forest inventory data, coupled with the developing capacity 441 

to remote sense forest mycorrhizal associations (Fisher et al., 2016), provides information to 442 

develop and calibrate new simulation models that explicitly represent these divergent categories 443 

of forest microbial symbiont types (Brzostek et al., 2014). This coupled approach promises to 444 

advance a new class of ecosystem models that can address the role of the forest microbiome in 445 

the C cycle at a scale necessary to understand ecosystem responses to global environmental 446 

change. 447 
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Figure Captions 

Fig. 1. Distribution of sites used in all analyses, as well as the relative abundance of EM trees by 

basal area in each plot. All points were used in the analyses of the relative abundance of EM 

basal area and soils. Circles represent plots that were used in both the demographic analyses and 

the relative abundance analysis, while X's represent plots used in the relative abundance analysis 

only. N deposition data are based on the 2000-2014 mean wet + dry N deposition rates reported 

by the National Atmospheric Deposition Program. N deposition data are log transformed for 

visualization purposes only. 

Fig. 2. Relationships between forest mycorrhizal abundance and mycorrhizal-specific 

demographic processes and N deposition. The relative abundance of EM trees is negatively 

correlated with N deposition (a.) N deposition had a positive effect on individual tree mortality 

rates, but there was no significant difference between AM and EM trees (b.) N deposition has a 

significantly more positive effect on arbuscular mycorrhizal (AM) basal area growth than EM 

basal area growth at the plot level (c., d.) such that these curves cross (e.) Nitrogen deposition 

had a positive effect on AM tree recruitment at the plot level but a negative effect on EM 

recruitment (f., g.) such that these curves cross (h.) Regression lines are based on the full 
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multiple regression output, holding all other predictors constant at their mean values. Shaded 

regions represent the 95% credible interval of the mean response. Points plotted are binned mean 

values and associated standard errors of soil C observations that have been detrended to remove 

variance associated with other predictors in the model. For additional detail see "Reporting of 

Results" in the Methods Section. 

Fig. 3. Soil C storage as a function of EM relative abundance at low and high levels of N 

deposition. There is a positive relationship between soil C storage and the relative abundance of 

EM trees within a plot. However, there is an interaction between the relative abundance of EM 

trees and N deposition such that the effect is strong at low levels of N deposition (a.) but is 

completely absent at the highest levels of N deposition observed in the data set (b.) Regression 

lines are based on the full multiple regression output, holding all other predictors constant at their 

mean values. Shaded regions represent the 95% credible interval of the mean response. Points 

plotted are binned mean values and associated standard errors of soil C observations that have 

been detrended to remove variance associated with other predictors in the model. For additional 

detail see "Reporting of Results" in the Methods section.  
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